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Summary of the previous lecture

 I presented stellar structure equations, and evolution of Solar-mass star 
on the HR diagram

 I talked about close binary systems
 Interacting binaries, their classification (detached, semi-detached or contact 

systems)
 Definition of Roche lobe, position of Largrange points, fitting formulae for 

different mass ratios of stars
 The process of Roche lobe overflow, which leads to the formation of 

accretion disks
 I presented classification of binaries wrt. type of donor and accretor 

(compact star, evolved star, MS star) – mostly phenomenological, 
based on known archetypical systems

Today I will derive the basic properties of accretion disks in 
binaries. 



  

Reminder: Virial theorem
 In statistical mechanics, the virial theorem provides a 

general equation that relates the time-average of the total 
kinetic energy of a stable system of discrete particles, 
bound by a conservative force, with that of the total 
potential energy of the system.

 ⟨ K  = -1/2 ⟩ Σk=1
N  ⟨ F k r k  ⟩

 If the force between any two particles of the system results 
from a potential energy U(r) = αrn, the virial theorem takes 
the simple form

2  K  = n  U⟨ ⟩ ⟨ TOT  .⟩
 UTOT represents the total potential energy of the system, 

i.e., the sum of the potential energy U(r) over all pairs of 
particles. A common example of such a system is a star 
held together by its own gravity, where n =−1. 



  

Reminder: Opacity
 Opacity of a shell in the star is found by adding together 

the cross-sections of all the absorbers and scatterers in 
the shell, and dividing by the total mass of the shell.

 Simplest opacity is given by Thomson scattering, when 
the photons are scattered over free electrons. The cross-
section of this process is

which gives 6.7x10-25 cm2
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Circularization radius
 Circular orbit: Keplerian velocity at radius R

 Angular momentum is conserved

 Final formula Rc/a = (1+q)(RL1/a)4 

 Approximately: Rc /a = 0.0859 q-0.426

 Various fitting fomulae, some give RL2: q-> q-1 

V K=GMR

R cV Rc =
2
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RL1
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Accretion

Accretion is astrophysical 
process of accumulating 
gaseous matter onto a massive 
object by gravitational attraction.

Most objects – stars, planets, 
galaxies – are formed by 
accretion.

Accretion disk is a structure 
fomed by matter that is in orbital 
motion around the massive body



  

Formation of an accretion disk

 Ring of width dR rotates 
differentially

 This leads to a shear stress

 Friction opposes shear and 
causes the ring to spread 
inward and outward

 Angular momentum is 
transported outwards

ΔV=V2
Δ R
R



  

Formation of accretion disk
 Subsequent rings are loosing 

angular momentum, but they 
are forced to stay on 
Keplerian orbits

 Rings are moving inwards
 Gravitational potential energy 

of the gas is liberated and 
disk heats up

 Viscosity: responsible for 
angular momentum transport 
and disk heating



  

Viscous disk
 Viscous torque is exerted by the outer ring on the inner (and 

vice versa)

where   ν = λv is the kinematic viscosity, with λ given by the 
mean free path and v is thermal speed, for molecular transport, 
or the wavelength and speed of turbulence.
 Dissipation rate is given by the net torque per unit area, 

where we integrated over disk thickness, and Σ=ρH is the surface 
density. 

G(R)=2π R ν ΣR2 dΩ
dR

D(R)= G
4 π R

dΩ
d R=

9
8 ν ΣGM

R3



  

Structure of the disk

 Disk is optically thick, geometrically thin.
 Height averaging → integrated (surface) density
 Stationary: time derivatives vanish
 We solve the equations of radial mass 

conservation and momentum conservation 
(Euler equation).

 Adopt the proper inner boundary condition (on 
the star surface)



  

Temperature as a function of 
radius

 The mass accretion rate

 From the angular momentum equation for 
steady disk we have

 Therefore the dissipation rate, so the locally 
emitted energy flux, is given by

Ṁ=2 R vr

 = Ṁ
3

[1− RstarR ]

F tot=
3GM Ṁ

8 R3 f  R= T  R4



  

Shape of the spectrum

 Temperature of the 
disk depends on 
radius.

 From the outer parts, 
we'll see the Rayleigh-
Jeans tail of the 
spectrum

 From the inner edge, 
we'll see the 
exponential cut-off



  

Disk black body

Contributions from different annuli of the disk to 
its thermal spectrum



  

Temperature and spectrum

 Average effective temperature: blackbody 
approximation

 Thus the disk temperature scales with fourth 
root of mass and accretion rate, and inveresly 
with root of disk size

 The temperature decreases with radius
 Larger disks are cooler

Ldisk= R2 T eff
4



  

Disk energetics

 If the heat generated by viscosity is radiated, 
the luminosity of the disk is governed by the 
mass transfer rate and compactness of the 
accretor

 Efficiency of this process is the fraction of the 
rest mass energy that is radiated 

L∝G M Ṁ
R

L= Ṁ c2



  

Examples

 Main sequence star: η = 2x10-6, (cf. The 
efficiency of H-He conversion is 0.007)

 White dwarf η=10-4

 Neutron star η = 0.2
 Schwarzschild black hole η = 0.057
 Extreme Kerr black hole η = 0.43



  

Break



  

Steady disk
 External conditions may change on timescales much 

longer than viscous. Therefore we can neglect time 
derivatives and

 From the angular momentum equation, we get

where the term in brackets comes from the constant, 
determined by inner boundary condition (it is not valid if the 
star has a strong magnetic field, or rotates much faster 
than ΩK(R*).

RV R=const=−
1

2 Ṁ

 = Ṁ
3

[1−
R star
R


1/2

]



  

Structure in the vertical direction

 Hydrostatic equilibrium (given by the z-
component of the Euler equation, with neglected 
velocity terms)

 For a thin disk, z<<R, H<<R, z~H, dP/dz ~ P/H
 The local Kepler velocity is highly supersonic: 

H » cs/Ω2, so cs << (GM/R)1/2

 The radial drift velocity is subsonic

 vR ~ a cs H/R << cs

1
ρ
∂P
∂ z =−

GM
r2

z
r



  

Local structure of thin disk
 Vertical structure is decoupled from radial and is 

treated as 1-d version of stellar structure
 Vertical energy transport may be radiative or 

convective, depending on temperature gradient
 For radiative transport, the flux through z=const 

surface (in plane-parallel approximation) is

with the Rosseland-mean opacity, given by Kramer’s  

κ(ρ,T) = 5x1024 r T-7/2 [cm2 g-1]
 The disk is optically thick if t =κρH = κΣ >>1.

F  z =−
16 T 3

3 
∂T
∂ z



  

Energy balance
 The energy balance requires:

F(z=H) - F(z=0)= D(R)
 If surface temperature is much smaller than 

central temperature, this will be

 The closing relation is the equation of state, and in 
general the pressure is a sum of gas and radiation 
pressures:

with mean molecular weight m~1 for neutral hydrogen

4 T c
4

3
=3G M Ṁ

8 R3 [1−
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R


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Magnitude of viscosity

 Viscous stresses are generated via thermal and 
turbulent motions

 In cylindrical coordinates, the viscous stress 
tensor rf component is

Trf = ρ ν r Ω'
 The kinematic viscosity, according to Shakura & 

Sunyaev (1973) prescription, is
 ν = a cs H

with a constant a~0.1.



  

Steady state disk solutions
 Σ = 5.2 a-4/5 dM16

 7/10 m1
 ¼ R10

-3/4  f 14/5    [g cm-2]
 H = 1.7x108 a-1/10 dM16 3/20 m1 -3/8 R10 9/8  f 3/5    [cm]
 ρ = 3.1x10-8 a-7/10 dM16

 11/20 m1
 5/8 R10 -15/8 f11/5 [g cm-3]

 Tc = 1.4x104 a-1/5 dM16
 3/10 m1

 1/4 R10 -3/4 f 6/5 [K]
 t = 190 a-4/5 dM16

 1/5 f 4/5

 ν = 1.8x1014 a 4/5 dM16
 3/10 m1

 -1/4 R10 3/4 f 6/5 [cm2 s-1]
 VR = 2.7x104 a 4/5 dM16

 3/10 m1
 -1/4 R10 -1/4 f  -14/5 [cm s-1]

Shakura & Sunyaev (1973). Assumed m=0.615 and no radiation 
pressure. R10=R/(1010 cm), m1=M/MSun, dM16=dM/(1016 g s-1); f is 
given by the boundary condition at inner edge.



  

Outer edge of the disk

 Tidal interaction with the companion star keeps 
the disk from overflowing the Roche lobe.

 Paczyński (1977); Papaloizou & Pringle (1977)

 Combined effects of viscous diffusion, tidal 
dissipation and mass transfer stream: outer 
edge could reach up to 80-90% of the Roche 
lobe radius

Rmax
a

= 0.60
1+q



  

Hot spot

 The stream of gas 
heats the outskirts 
of accretion disk 
with supersonic 
speed

 The shock-heated 
spot may radiate in 
Optical band and 
emit more than the 
donor star and disk 
itself



  

Inner edge of the disk
 Star's surface
 Black hole: radius of the marginally stable circular orbit, 

depends on the spin parameter
 Detailed discussion in Krolik & Hawley (2002) 

describes other 'working' definitions:
 Radiation edge: innermost radius from which ignificant 

luminosity emerges; different from rms due to e.g. 
Gravitational redshift, photon trapping

 Reflection edge: material even inside rms can reflect and 
reprocess X-rays

 Stress edge: magnetic stress may continue well inside rms

 Turbulence edge: MHD turbulence ceases



  

Boundary Layer

 Hard surface of the star 
(neutron star, white dwarf)

 Gas moving with Keplerian 
velocities in the disk must be 
decelerated to match the 
star's rotation

 Energy is used to spin up the 
star but is also dissipated

 Bulk of the boundary layer 
radiation is emitted in UV 
and X-rays



  

Spherical accretion
 Matter falls spherically onto central 

object (zero, or very low angular 
momentum)

 Infalling gas consists of ionised 
hydrogen

 Protons and electrons interact via 
Coulomb collissions

 If the mean free path is small, 
hydrodynamic approach is valid

 For collissionless plasma, 
hydrodynamics breaks up, for low 
accretion rates

 Magnetic fields may help change 
mean free path



  

Spherical accretion

 In hydrodynamic approach, the properties of 
gas are governed by the equations of fluid 
mechanics.

 Continuity equation enforces the conservation 
of mass

 Euler equation considers forces due to pressure 
gradient and gravity

 Bondi (1952) solved the problem in spherical 
symmetry, assuming polytropic equation of 
state



  

Topology of solutions



  

Bondi accretion

 Bernoulli equation

 Problem can be parameterized by the sound 
speed and gas density at infinity

where rs = GM/(2 cs
2) is sonic radius

1
2
v r

2+
cs

2

γ−1
−GM

r
=const1

2
v r

2+
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2

γ−1
−GM

r
=const

cs
2(r s)=c s ,∞

2 2
5−3 γ Ṁ=4 πρ∞

2
5−3 γ

5−3γ
2 (γ−1) G

2M 2

c s ,∞
3



  

Examples

 Weakly active 
galaxy

 Wind accretion 
in binary system

 Adding a small 
angular 
momentum 
complicates the 
solution 
topology

Palit, I., et al.  ( 2019; 2020) 



  

Next week

 Observations of accretion disks in X-rays
 Radiative processes, soft and hard spectra

 Suggested literature: 
 Frank J. et al. ”Accretion Power in Astrophysics”, 
 Shapiro, Teukolsky – appendix G, spherical accretion onto black hole
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