Compact Stars

Lecture 3

Summary of the previous lecture

- I presented stellar structure equations, and evolution of Solar-mass star on the HR diagram
- I talked about close binary systems
 - Interacting binaries, their classification (detached, semi-detached or contact systems)
 - Definition of Roche lobe, position of Largrange points, fitting formulae for different mass ratios of stars
 - The process of Roche lobe overflow, which leads to the formation of accretion disks
 - I presented classification of binaries wrt. type of donor and accretor (compact star, evolved star, MS star) – mostly phenomenological, based on known archetypical systems

Today I will derive the basic properties of accretion disks in binaries.

Reminder: Virial theorem

 In statistical mechanics, the virial theorem provides a general equation that relates the time-average of the total kinetic energy of a stable system of discrete particles, bound by a conservative force, with that of the total potential energy of the system.

 $\langle K \rangle = -1/2 \Sigma_{k=1}^{N} \langle F_{k} r_{k} \rangle$

 If the force between any two particles of the system results from a potential energy U(r) = αrⁿ, the virial theorem takes the simple form

2 \langle K \rangle = n \langle U_{TOT} \rangle .

U_{TOT} represents the total potential energy of the system,
i.e., the sum of the potential energy U(r) over all pairs of particles. A common example of such a system is a star held together by its own gravity, where n =-1.

Reminder: Opacity

 Opacity of a shell in the star is found by adding together the cross-sections of all the absorbers and scatterers in the shell, and dividing by the total mass of the shell.

$$\kappa = \frac{\sum_{i} n_{i} \sigma_{i}}{\rho}$$

 Simplest opacity is given by Thomson scattering, when the photons are scattered over free electrons. The crosssection of this process is

$$\sigma_T = \frac{8\pi}{3} \left(\frac{e^2}{m_e c^2}\right)^2$$

which gives $6.7 \times 10^{-25} \text{ cm}^2$

Circularization radius

Circular orbit: Keplerian velocity at radius R

$$V_{K} = \sqrt{\frac{GM}{R}}$$

Angular momentum is conserved

$$R_{c}V(R_{c}) = \frac{2\pi}{P_{orb}}R_{L1}^{2}$$

- Final formula $R_c/a = (1+q)(R_{L1}/a)^4$
- Approximately: $R_c / a = 0.0859 q^{-0.426}$
- Various fitting fomulae, some give R_{L2} : q-> q⁻¹

Accretion

Accretion is astrophysical process of accumulating gaseous matter onto a massive object by gravitational attraction.

Most objects – stars, planets, galaxies – are formed by accretion.

Accretion disk is a structure fomed by matter that is in orbital motion around the massive body

Formation of an accretion disk

- Ring of width dR rotates differentially
- This leads to a shear stress

$$\Delta V = \frac{V}{2} \frac{\Delta R}{R}$$

- Friction opposes shear and causes the ring to spread inward and outward
- Angular momentum is transported outwards

Formation of accretion disk

- Subsequent rings are loosing angular momentum, but they are forced to stay on Keplerian orbits
- Rings are moving inwards
- Gravitational potential energy of the gas is liberated and disk heats up
- Viscosity: responsible for angular momentum transport and disk heating

Viscous disk

Viscous torque is exerted by the outer ring on the inner (and vice versa)

$$G(R) = 2 \pi R \nu \Sigma R^2 \frac{d \Omega}{dR}$$

where $v = \lambda v$ is the kinematic viscosity, with λ given by the mean free path and v is thermal speed, for molecular transport, or the wavelength and speed of turbulence.

Dissipation rate is given by the net torque per unit area,

$$D(R) = \frac{G}{4 \pi R} \frac{d \Omega}{d R} = \frac{9}{8} \nu \Sigma \frac{G M}{R^3}$$

where we integrated over disk thickness, and $\Sigma\text{=}\rho\text{H}$ is the surface density.

Structure of the disk

- Disk is optically thick, geometrically thin.
- Height averaging \rightarrow integrated (surface) density
- Stationary: time derivatives vanish
- We solve the equations of radial mass conservation and momentum conservation (Euler equation).
- Adopt the proper inner boundary condition (on the star surface)

Temperature as a function of radius

The mass accretion rate

 $\dot{M} = 2 \pi R \Sigma v_r$

 From the angular momentum equation for steady disk we have

$$\nu \Sigma = \frac{\dot{M}}{3\pi} \left[1 - \sqrt{\frac{R_{star}}{R}} \right]$$

 Therefore the dissipation rate, so the locally emitted energy flux, is given by

$$F_{tot} = \frac{3GM\dot{M}}{8\pi R^3} f(R) = \sigma T(R)^4$$

Shape of the spectrum

- Temperature of the disk depends on radius.
- From the outer parts, we'll see the Rayleigh-Jeans tail of the spectrum
- From the inner edge, we'll see the exponential cut-off

Disk black body

Contributions from different annuli of the disk to its thermal spectrum

Temperature and spectrum

 Average effective temperature: blackbody approximation

$$L_{disk} = \pi R^2 \sigma T_{eff}^4$$

- Thus the disk temperature scales with fourth root of mass and accretion rate, and inversely with root of disk size
- The temperature decreases with radius
- Larger disks are cooler

Disk energetics

 If the heat generated by viscosity is radiated, the luminosity of the disk is governed by the mass transfer rate and compactness of the

accretor

$$L \propto rac{G \ M \ \dot{M}}{R}$$

 Efficiency of this process is the fraction of the rest mass energy that is radiated

$$L = \eta \dot{M} c^2$$

Examples

- Main sequence star: η = 2x10⁻⁶, (cf. The efficiency of H-He conversion is 0.007)
- White dwarf $\eta = 10^{-4}$
- Neutron star $\eta = 0.2$
- Schwarzschild black hole $\eta = 0.057$
- Extreme Kerr black hole $\eta = 0.43$

 External conditions may change on timescales much longer than viscous. Therefore we can neglect time derivatives and

$$R \Sigma V_R = const = -\frac{1}{2\pi} \dot{M}$$

From the angular momentum equation, we get

$$v \Sigma = \frac{\dot{M}}{3\pi} \left[1 - \left(\frac{R_{star}}{R}\right)^{1/2} \right]$$

where the term in brackets comes from the constant, determined by inner boundary condition (it is not valid if the star has a strong magnetic field, or rotates much faster than $\Omega_{\kappa}(R_{\star})$.

Structure in the vertical direction

 Hydrostatic equilibrium (given by the zcomponent of the Euler equation, with neglected velocity terms)

$$\frac{1}{\rho} \frac{\partial P}{\partial z} = -\frac{GM}{r^2} \frac{z}{r}$$

- For a thin disk, z<<R, H<<R, z~H, dP/dz ~ P/H
- The local Kepler velocity is highly supersonic:

 $H \approx c_s / \Omega^{2}$, so $c_s << (GM/R)^{1/2}$

The radial drift velocity is subsonic

 $v_R \sim \alpha c_s H/R \ll c_s$

Local structure of thin disk

- Vertical structure is decoupled from radial and is treated as 1-d version of stellar structure
- Vertical energy transport may be radiative or convective, depending on temperature gradient
- For radiative transport, the flux through z=const surface (in plane-parallel approximation) is

$$F(z) = -\frac{16\,\sigma\,T^3}{3\kappa\,\rho}\frac{\partial\,T}{\partial\,z}$$

with the Rosseland-mean opacity, given by Kramer's

 $\kappa(\rho,T) = 5 \times 10^{24} \text{ r } \text{T}^{-7/2} [\text{cm}^2 \text{ g}^{-1}]$

• The disk is optically thick if $\tau = \kappa \rho H = \kappa \Sigma >>1$.

Energy balance

The energy balance requires:

$$F(z=H) - F(z=0) = D(R)$$

 If surface temperature is much smaller than central temperature, this will be

$$\frac{4\sigma T_{c}^{4}}{3\tau} = \frac{3G M \dot{M}}{8\pi R^{3}} \left[1 - \left(\frac{R_{star}}{R}\right)^{1/2}\right]$$

 The closing relation is the equation of state, and in general the pressure is a sum of gas and radiation pressures:

$$P = \frac{k}{\mu m_{p}} \rho T_{c} + \frac{4\sigma}{3c} T_{c}^{4}$$

with mean molecular weight $\mu \sim 1$ for neutral hydrogen

Magnitude of viscosity

- Viscous stresses are generated via thermal and turbulent motions

$$\mathsf{T}_{\mathsf{r}\phi} = \rho \, \mathbf{v} \, \mathsf{r} \, \Omega'$$

 The kinematic viscosity, according to Shakura & Sunyaev (1973) prescription, is

$$v = \alpha C_s H$$

with a constant α ~0.1.

Steady state disk solutions

- $\Sigma = 5.2 \alpha^{-4/5} dM_{16} ^{7/10} m_1 ^{\frac{1}{4}} R_{10} ^{-3/4} f^{14/5} [g cm^{-2}]$
- $H = 1.7 \times 10^8 \alpha^{-1/10} dM_{16} {}^{3/20} m_1 {}^{-3/8} R_{10} {}^{9/8} f^{3/5}$ [cm]
- $\rho = 3.1 \times 10^{-8} \alpha^{-7/10} dM_{16}^{11/20} m_1^{5/8} R_{10}^{-15/8} f^{11/5} [g cm^{-3}]$
- $T_c = 1.4 \times 10^4 \alpha^{-1/5} dM_{16} {}^{3/10} m_1 {}^{1/4} R_{10} {}^{-3/4} f^{6/5} [K]$
- $\tau = 190 \ \alpha^{-4/5} \ dM_{16} \ {}^{1/5} \ f^{4/5}$
- $v = 1.8 \times 10^{14} \alpha^{4/5} dM_{16}^{3/10} m_1^{-1/4} R_{10}^{3/4} f^{6/5} [cm^2 s^{-1}]$
- $V_R = 2.7 \times 10^4 \alpha^{4/5} dM_{16}^{3/10} m_1^{-1/4} R_{10}^{-1/4} f^{-14/5} [cm s^{-1}]$

Shakura & Sunyaev (1973). Assumed μ =0.615 and no radiation pressure. R₁₀=R/(10¹⁰ cm), m₁=M/M_{Sun}, dM₁₆=dM/(10¹⁶ g s⁻¹); f is given by the boundary condition at inner edge.

Outer edge of the disk

- Tidal interaction with the companion star keeps the disk from overflowing the Roche lobe.
- Paczyński (1977); Papaloizou & Pringle (1977)

$$\frac{R_{max}}{a} = \frac{0.60}{1+q}$$

 Combined effects of viscous diffusion, tidal dissipation and mass transfer stream: outer edge could reach up to 80-90% of the Roche lobe radius

Hot spot

- The stream of gas heats the outskirts of accretion disk with supersonic speed
- The shock-heated spot may radiate in Optical band and emit more than the donor star and disk itself

Inner edge of the disk

- Star's surface
- Black hole: radius of the marginally stable circular orbit, depends on the spin parameter
- Detailed discussion in Krolik & Hawley (2002) describes other 'working' definitions:
 - Radiation edge: innermost radius from which ignificant luminosity emerges; different from r_{ms} due to e.g. Gravitational redshift, photon trapping
 - Reflection edge: material even inside rms can reflect and reprocess X-rays
 - Stress edge: magnetic stress may continue well inside r_{ms}
 - Turbulence edge: MHD turbulence ceases

Boundary Layer

- Hard surface of the star (neutron star, white dwarf)
- Gas moving with Keplerian velocities in the disk must be decelerated to match the star's rotation
- Energy is used to spin up the star but is also dissipated
- Bulk of the boundary layer radiation is emitted in UV and X-rays

Spherical accretion

- Matter falls spherically onto central object (zero, or very low angular momentum)
- Infalling gas consists of ionised hydrogen
- Protons and electrons interact via Coulomb collissions
- If the mean free path is small, hydrodynamic approach is valid
- For collissionless plasma, hydrodynamics breaks up, for low accretion rates
- Magnetic fields may help change mean free path

Spherical accretion

- In hydrodynamic approach, the properties of gas are governed by the equations of fluid mechanics.
- Continuity equation enforces the conservation of mass
- Euler equation considers forces due to pressure gradient and gravity
- Bondi (1952) solved the problem in spherical symmetry, assuming polytropic equation of state

Topology of solutions

Bondi accretion

Bernoulli equation

$$\frac{1}{2}v_r^2 + \frac{c_s^2}{\gamma - 1} - \frac{GM}{r} = const$$

 Problem can be parameterized by the sound speed and gas density at infinity

where $r_s = GM/(2 c_s^2)$ is sonic radius

Examples

- Weakly active galaxy
- Wind accretion in binary system
- Adding a small angular momentum complicates the solution topology

Palit, I., et al. (2019; 2020)

Next week

- Observations of accretion disks in X-rays
- Radiative processes, soft and hard spectra

Suggested literature:

- Frank J. et al. "Accretion Power in Astrophysics",
- Shapiro, Teukolsky appendix G, spherical accretion onto black hole