
Chapter II 

THE ROCHE MODEL 

One of the fundamental problems of the astronomy of close binary systems is 
to investigate the equilibrium forms of their components, of arbitrary structure, 
distorted by rotation and tides, defined as the surfaces over which the potential of 
all forces acting within the system remain constant. Should we insist that such 
results be applicable to stars of any structure, the problem of the equilibrium 
forms has so far been solved only to a limited degree of accuracy-insufficient 
for an interpretation of the observed phenomena of very close systems. The 
aim of the present chapter will, however, be to demonstrate that if this latter 
requirement is given up, and the density concentration of the stars constituting 
our binary is allowed to approach infinity, their shape can be described in a 
closed algebraic form, which is exact for any such configuration irrespective of the 
proximity of its components or their mass ratio. Such a model is generally known 
in the literature, under the name of its originator, as the Roche Model; and the 
aim of the present chapter will be to summarize its most important geometrical 
and other properties which should be of interest for the students of close binary 
systems. 

11.1 Roche Model: A Definition 

In order to introduce to the reader such a model, let ml,2 denote the masses of the 
two components of a close binary system; and R, the separation of their centres 
of mass. Suppose, moreover, that the positions of these centres are referred 
to a rectangular system of Cartesian coordinates, with the origin at the centre 
of gravity of mass ml-the x-axis of which coincides with the line joining the 
centres of the two stars (i.e., the radius-vector of the relative orbit of the two 
masses which will-in this chapter-be regarded as constant); while the z-axis 
is perpendicular to the plane of the orbit. If so, the coordinates of the centre of 
gravity of the system are 

m2R 
---,0,0; 
ml + m2 

(1.1) 

and the total potential W of all forces acting at an arbitrary point P(x, y, z) 
becomes expressible as 

(1.2) 
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where 
(1.3) 

represent squares of the distance of P from the centres of gravity of the two 
components, and w denotes the angular velocity of rotation of the system about 
an axis perpendicular to the orbital plane and passing through the centre of 
gravity of the system whose coordinates are given by (1.1). The first term on the 
right-hand side of Equation (1.2) represents the potential arising from the mass 
ml; the second, the disturbing potential of its companion of mass m2; and the 
third, the potential arising from the centrifugal force. 

Let, furthermore, the angular velocity w on the right-hand side of Equation 
(1.2) be identified with the Keplerian angular velocity 

2 G(ml + m2) 
w = R3 (1.4) 

of the system. If we insert (1.4) in (1.2) and, moreover, adopt ml as our unit of 
mass; R, as the unit of length while the unit of time is chosen so that G = 1, 
Equation (1.2) may be expressed in terms of spherical polar coordinates 

as 

where 

and 

x = r cos ¢ sin () = r A, } 

y = r sin ¢ sin () = r J.L , 

z = r cos () = rv, 

(1.5) 

(1.6) 

(1. 7) 

(1.8) 

the two masses ml,2 (and, therefore, their ratio q being likewise regarded as 
constant. 

Within the scheme of definitions adopted, none of the terms constituting the 
normalized potential ~ depends on the time; and Equation (1.6) defining it will 
generate surfaces described by the polar coordinates r, >., v; the forms of which are 
governed by the non-dimensional values of ~ and q. If ~ is large, the corresponding 
surfaces-hereafter referred to as the Roche Equipotentials-will consist of two 
separate ovals (see Figure 11.1) closed around each of the two mass-points; for the 
right-hand side of (1.6) can be large only if r (or r' = \1'1- 2>.r + r2 ) becomes 
small; and if the left-hand side of (1.6) is to be constant, so must be (very nearly) 
r or r'o Large values of ~ correspond, therefore, to equipotentials differing but 
little from spheres-the less so, the greater ~ becomes. With diminishing value 
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(~' 

Figure ILl: A cross-section of the Roche Model of a binary system of masses m and 
m'; the heavy line representing the Roche limit (after Jeans, 1919). 

of ~ the ovals defined by (1.6) become increasingly elongated in the direction 
of the centre of gravity of the system - until, for a certain critical value of 6 
characteristic of each mass-ratio, both ovals will unite in a single point on the 
x-axis to form a dumb-bell-like configuration (cf. again Figure II.1) which we 
propose to call the Roche Limit.1 For still smaller values of ~ the connecting part 
of the dumb-bell opens up and the corresponding equipotential surfaces would 
envelop both bodies. This latter case is, however, of no direct interest to us in 
this connection; as for ~ < 6 the two initially distinct bodies would coalesce in 
one and we should no longer have the right to speak of a binary system. In what 
follows we shall, therefore, limit ourselves to a study of the geometry of surfaces 
characterized by ~ 2: 6. 

II.2 Geometry of Roche Equipotentials 

Equation (1.6) of the Roche equipotentials represents an implicit function defin
ing, for given values of ~ and q, r as a function of A and v. When it has been 
rationalized and cleared of fractions, the result is an algebraic equation of eighth 
degree in r, whose analytical solution presents unsurmountable difficulties. In 

1 Not to be confused with a concept used, under the same name, in other literature to signify 
the minimum distance to which a fluid satellite of infinitesimal mass can approach with impunity 
an oblate planet. This latter term, coined in the latter half of the 19th century by G. H. Darwin, 
has nothing to do with the "Roche Limit" as defined in this section (and introduced under this 
name by Kopal (1955) to describe the fractional size of "contact" components in semi-detached 
ecli psing systems). 
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the case of pure rotational distortion (obtaining if q = 0) Equation (1.6) can 
be reduced to a cubic solvable in terms of circular functions. In the case of a 
purely tidal distortion (w = 0), Equation (1.6) becomes a quartic, which could 
also be solved for r in a closed form (though its solution would be very much more 
involved). However, in the general case of rotational and tidal distortion inter
acting, any attempt at an exact solution of (1.6) for r becomes virtually hopeless; 
and approximate solutions must be sought by successive approximations. 

A: Radius and Volume 

In order to obtain them, let us begin by expanding the radical (1- 2>.r + r2)-1/2 
on the right-hand side of (1.6) in terms of the Legendre polynomials Pj(>'). Doing 
so and removing fractions we find it possible to replace (1.6) by 

00 

(~- q)r = 1 + q L rj+l Pj(>') + nr3 (1 - v2 ) , 

j=2 

where we have abbreviated 

n = 
q+1 

2 

(2.1 ) 

(2.2) 

If r is small in comparison with unity (Le., if the linear dimensions of the equipo
tential surfaces are small in comparison with our unit of length R), the second 
and third terms on the right-hand side of (2.1) may be neglected in comparison 
with unity-in which case 

1 
ro = --. 

~-q 
(2.3) 

This result asserts that if ~ is large, the corresponding Roche equipotential will 
differ but little from a sphere of radius ro. 

Suppose now that 

rl = ro + 6,' r = ro (1 + ~~r) (2.4) 

should represent our next approximation to r. Inserting it in (2.1) we find that 

(2.5) 

where, in small terms on the right-hand side, r was legitimately replaced by ro. 
The foregoing equation then yields 

(2.6) 

correctly to quantities of the order of rg (i.e., as far as squares and higher terms 
of first-order distortion remain negligible). 
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In order to improve upon this approximation let us set, successively, 

{ 6,'r 6,"r} 
r2 = rl + 6,"r = ro 1 + - + - , 

ro ro 
(2.7) 

{ 6,'r 6,"r 6,"'r} 
r3 = r2 + 6,"'r = ro 1 + - + -- + --

ro ro ro 

(2.8) 

(2.9) 

where 

(2.10) 

3N denoting the highest power of ro to which Equation (2.9) represents a correct 
solution for r. We may note that, in general, the leading terms of the expression 
(2.10) for 6, (i+l)r)/ ro will be of 3( i+ 1 )st degree in ro; and, similarly, the difference 
rf - rLl in higher terms on the right-hand side of (2.10) will be of the order of 
r3i+k a 

Suppose that, in what follows, we wish to construct the explicit form of an 
approximate solution of Equation (2.1), in the form of (2.8), correctly to (say) 
quantities of the order of 6,"'r fro-which should, therefore, differ from the exact 
solution of (2.1) at most in quantities of the order of r62 • By use of the expression 
already established for 6,'r/ro the explicit forms of 6,"r/ro and 6,"'r/ro can 
successively be found2 and their insertion in (2.8) leads to the equation 

r - ro 
ro 

r3{qP2 + n(l- v2)} + rri{qP3} + rg{qP4 } + 

+rZ{qP5 + 3[qP2 + n(l - v2)j2} + 
+r6{qP6 + 7q[qP2 + n(l - V 2))P3} + 
+rg{qP7 + 8q[qP2 + n(l - V 2))P4 + 4q2 Pi} + (2.11) 

+r6{qPs + 9q[qP2 + n(l - V 2))P5 + 9q2 P3P4 + 
+6[qP2 + n(l - v2 ))3 + 6[q3 P{ + n3(1 _ v2 )3)} + 

+r60{qP9 + lOq[qP2 + n(l - V 2))P6 + 5q2[Pl + 2P3P5 ) + 
+45q[qP2 + n(l - v2))2 P3} + 

+r61{qPlO + 11q([qP2 + n(l- V 2))P7 + 11q2[P3P6 + P4 P5 ) + 
+55q[qP2 + n(l - v2))2 P4 + 
+55q2[qP2 + n(l - v2 ))Pi} + ... , 

2 For fuller details of this process, cf. Kopal (1954, 1959). 
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where we have abbreviated Pj == Pj(A), and which represents the desired approx
imate solution of Equation (2.1) for T as a function of >. and v in the form of an 
expansion in ascending powers of TO (as defined by Equation (2.3)). 

The volume V of a configuration whose radius-vector T is given by the fore
going Equation (2.12) will be specified by 

V = ~ r1 r'/1 ->.2 T3 d>' dv 
3 1-1 J-"/1_>.2 J.l 

(2.12) 

where J.l2 = 1 - >.2 - v2• By virtue of the algebraic identity 

3 3 { T - TO}3 
T = TO 1 + --

TO 
(2.13) 

we find it convenient to express the integrand in (2.19) in terms of (2.19) as a 
function of >. and v. This integrand will, in general, consist of a series of terms of 
the form AmVn / J.l, factored by constant coefficients; therefore, the entire volume 
V will be given by an appropriate sum of partial expressions Vnm of the form 

1
1 1"/1->.2 >.mvn 

Vnm = -- dA dv . (2.14) 
-1 _../1->.2 J.l 

These expressions vanish (on grounds of symmetry) if either m or n is an odd 
integer. If, however, both happen to be even and such that m = 2a and n = 2b, 
an evaluation of the foregoing integrals readily reveals that 

v;2a _ J1iT(a + t)r(b + t) 
2b - r(a+b+~) , 

where r denotes the ordinary gamma function. As, accordingly, 

and 

/
1 /"/1->.2 Pj(A)dAdv = {271" if j = 0 

-1 -../1->.2 V1 - >.2 - v 2 0 if j > 0 

r1 /"/1->.2 v2j d>' dv 271" 
1-1 _../1_>.2 v1 - >.2 - v2 = j + 1 ' 

(2.15) 

(2.16) 

(2.17) 

we eventually find that the volume of a configuration whose surface is a Roche 
equipotential will be given by 

V = 

correctly to quantities of the order up to and including T6 1 • With n and TO as 
given by Equations (2.2) and (2.3) the volume V becomes an explicit function of 
~ and q alone and can be tabulated in terms of these parameters. 
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Figure 11.2: Schematic view of a contact binary at the Roche Limit. In order to exhibit 
the essential features of the geometry of this model, the diagram has not been drawn to 
scale for any particular mass-ratio; and certain features of it (such as the distance of the 
P5P7-plane from the origin) have been exaggerated. 

B: Roche Limit 

It was pointed out already in Section 11.1 that a diminution of the value of the 
constant ~ on the left-hand side of Equation (1.6) will cause the respective Roche 
equipotentials to expand from nearly spherical configurations to ovals of increased 
elongation in the direction of the attracting centre until, for a certain critical value 
of ~ characteristic of each mass-ratio, these ovals unite in a single point on the 
line joining their centres. Such configurations represent the largest closed equipo
tentials capable of containing the whole mass of the respective components, and 
will hereafter be referred to as their Roche limits. Any star filling its Roche limit 
will therefore be termed a contact component; and a binary system consisting 
of a pair of such components, a contact system. The fact that close binaries in 
which one, or both, components have attained their Roche limits actually exist 
in considerable numbers in the sky underlines the importance of a study of the 
geometry of Roche limits in binary systems of different mass-ratios. 

In order to do so, our first task should be to specify the values of ~ for which 
the two loops of the critical equipotential (cf. Figure II.2) develop a common 
point of contact at PI; but its determination presupposes a knowledge of the 
position of PIon the x-axis. The location of this point is characterized by the 
vanishing of the gravity due to all forces - which means that, at that point, 



14 CHAPTER II. THE ROCHE MODEL 

(2.19) 

Now a differentiation of (1.6), rewritten in terms of rectangular coordinates, with 
respect to x and y yields 

(x = -xr-3 + q{(l- x)(r't3 -I} + 2nx, 

(y = _y{r-3 + q(r't3 - 2n} , 

(z = -zr-3 - qz(r,)-3 , 

(2.20) 

(2.21 ) 

(2.22) 

where r2 = x2 + y2 + z2 and r'2 = (1- x)2 + y2 + z2 continue to be given by 
Equations (1.3) and 2n = q + 1 in accordance with (2.2). 

The partial derivative (y vanishes evidently everywhere along the x-axis; but 
the vanishing of (x renders the x-coordinate of PI to be a root of the equation 

x-2 - X = q{(l - x )-2 - (1 - x)} (2.23) 

which, after removal of the fractions, assumes the form 

(1 + q)x5 - (2 + 3q)X4 + (1 + 3q)x3 - x2 + 2x - 1 = 0 . (2.24) 

For q = 0 the foregoing equation would evidently reduce to 

(2.25) 

the value x = 1 becoming a triple root. Therefore, for small values of q, the 
root Xl of Equation (2.23) which is interior to the interval 0 < x < 0 can be 
approximated by the expansion 

1 2 1 3 
Xl = 1 - W + 3w + gW + ... (2.26) 

in terms of the auxiliary parameter 

1 w3 - • 
- 3(1 + q) , (2.27) 

and more accurate values of Xl can further be obtained by the method of differ
ential corrections. 

Once a sufficiently accurate value of Xl has thus been obtained, the actual 
value of ( corresponding to our critical equipotential follows as 

(2.28) 

Moreover, the points P4 ,5 in the xy-plane (see again Figure II.2) are evidently 
characterized by the vanishing of the derivative dyjdx at the Roche limit. Their 
coordinates X4,5 and Y4,5 can, therefore, be evaluated by solving the simultaneous 
system 

((x, y, 0) 
6, } 

o· , 
(2.29) 
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q Xl 6 X4 ±Y4 X5 ±Y5 ±Z6 ±Z7 

1.0 0.50000 3.75000 1.01134 0.37420 -0.01134 0.37420 0.35621 0.35621 
0.8 0.52295 3.41697 1.01092 0.35388 -0.01168 0.39501 0.33770 0.37491 
0.6 0.55234 3.06344 1.01029 0.32853 -0.01198 0.42244 0.31431 0.39909 
0.4 0.59295 2.67810 1.00926 0.29465 -0.01213 0.46189 0.28260 0.43278 
0.3 0.62087 2.46622 1.00847 0.27204 -0.01204 0.49015 0.26123 0.45599 

0.2 0.65856 2.23273 1.00735 0.24233 -0.01163 0.52989 0.23294 0.48714 
0.15 0.68392 2.10309 1.00656 0.22280 -0.01117 0.55774 0.21425 0.50781 
0.1 0.71751 1.95910 1.00552 0.19746 -0.01034 0.59609 0.18991 0.53451 
0.05 0.76875 1.78886 1.00397 0.15979 -0.00859 0.65804 0.15366 0.57291 
0.02 0.82456 1.65702 1.00245 0.11992 -0.00618 0.73070 0.11522 0.61434 

0.01 0.85853 1.59911 1.00165 0.09613 -0.00457 0.77779 0.09231 0.62867 
0.005 0.88635 1.56256 1.00110 0.07689 -0.00327 0.81807 0.07379 0.64170 
0.001 0.93231 1.52148 1.00041 0.04550 -0.00137 0.88816 0.04361 0.65762 
0.0002 0.96001 1.50737 1.00015 0.02678 -0.00052 0.93264 0.02566 0.66348 
0 1.00000 1.50000 1.00000 0.00000 0.00000 1.00000 0.00000 0.66667 

Table ILl: 

and once the values of X4,S have thus been found, the z-coordinates of points P6,7 

in the xz-plane (d. Figure II.2) follow as roots of a single equation 

HX4,S, 0, z) = 6 . (2.30) 

The accompanying Table 11.1 lists five-digit values of 6, Xl; X4,S, Y4 ,S; and 
Z6,7 for Roche limits appropriate for 15 discrete values of the mass-ratio. 

It may further be noted that if, in place of 6, we introduce a new constant 
CI as defined by the equation 

(2.31 ) 

where we have abbreviated 

(2.32) 

the values of CI remain largely invariant with respect to the mass-ratio, and 
sensibly equal to 4 provided that q does not depart greatly from unity. This is 
demonstrated by an inspection of the tabulation of CI as given in column (2) of 
the following Table II.2. In consequence, the simple expression 

2 

6 == 2(1 + q) - 2(lq+ q) (2.33) 
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q CI (roh (roh VI V2 (r*h (r*h VI V2 

4.00000 0.36363 0.36363 0.22704 0.22704 0.37845 0.37845 0.072267 0.072267 
0.8 3.99417 0.38212 0.34528 0.26459 0.19374 0.39825 0.35896 0.075799 0.069377 
0.6 3.96993 0.40594 0.32199 0.31974 0.15665 0.42420 0.33441 0.081422 0.066485 
0.4 3.90749 0.43896 0.29025 0.40923 0.11444 0.46057 0.30115 0.091184 0.063726 

0.3 3.84744 0.46163 0.26876 0.48148 0.09089 0.48622 0.27892 0.099619 0.062683 
0.2 3.74900 0.49195 0.24018 0.59399 0.06492 0.52147 0.24933 0.113443 0.061996 
0.15 3.67456 0.51201 0.22121 0.68002 0.05079 0.54552 0.22973 0.124462 0.061967 
0.1 3.57027 0.53789 0.19642 0.80715 0.03564 0.57760 0.20414 0.141308 0.062385 

0.05 3.40962 0.57509 0.15931 1.0289 0.01910 0.62626 0.16584 0.17193 0.063854 
0.02 3.24945 0.61087 0.11974 1.2700 0.007961 0.67179 0.12387 0.2062 0.06462 
0.01 3.16665 0.62928 0.09606 1.4656 0.004042 0.70465 0.09882 0.2356 0.06497 
0.005 3.10959 0.64203 0.07686 1.5950 0.002038 0.7248 0.07865 0.2551 0.06520 

0.001 3.03992 0.65769 0.04549 1.868 0.0004114 0.764 0.04614 0.298 0.06554 
0.0002 3.01414 0.66350 0.02679 2.067 0.0000826 0.790 0.02702 0.329 0.06575 
0 3.00000 0.66667 0.00000 2.26663 0.0000000 0.81488 0.00000 0.36075 0.065843 

Table II.2: The data collected in Tables II.1 and 2 are taken from Kopal (1959). More 
extensive tabulations of the same parameters for q = 1(-0.02) 0.10 to 5D have since 
been prepared by Plavec and KratochV11 (1964). Cf. also ten Bruggencate (1934). 

is found to approximate the exact values of 6 within 1% if 1 ~ q ~ 0.5, or 
within 10% for the wider range 1 ~ q ~ 0.1. The mean radii (rOh,2 of the 
two components of contact systems become (consistent with Equations (2.3) and 
(2.31)) equal to 

(2.34) 

where, for the primary component, 0 ~ J1- ~ 0.5; while, for the secondary, 0.5 ~ 
J1- ~ 1. Alternatively, we may fall back on Equation (2.3) and, by inserting for 6 
from (2.28) write 

(roh 
2 + 2qxl(1 - xt)-l + (q + 1)xl 

(2.35) 

while (roh is obtainable from the same expression if we replace Xl by 1 - Xl and 
q by its reciprocal. The values of (roh,2 so determined are listed as functions of 
the mass-ratio in columns (3) and (4) of Table I1.2. 

Having evaluated them, we are in a position to invoke Equation (2.19) for 
expressing the volumes Vt,2 of contact components-the reader will find them 
tabulated in columns (5) and (6) of Table II.2-while columns (7) and (8) list 
the equivalent radii (r* h,2 of spheres having the same volume as the respective 
contact component. The penultimate and ultimate columns of Table I1.2 then 
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contain the quantities 

Vl,2 w2 = ~ {1 + m2'1} (r* )~ 2 , 
27rGpl,2 3 ml,2 ' 

(2.36) 

where w denotes the (Keplerian) angular velocity of axial rotation of each com
ponent and PI 2, their respective mean densities. 

The series 'on the right-hand side of the volume equation (2.19)-which are 
at the basis of our numerical data as given in columns (5)-(10)-converge with 
satisfactory rapidity if the masses of the two components are not too unequal, 
but fail to do so if the mass of one component becomes very much larger than 
the other. In order to attain adequate representation ofthe radii and volumes in 
such cases, asymptotic solutions of Equation (2.1) must be sought as Jl -+ 0 or 1. 

In order to do so, we find it advantageous to rewrite (1.6) in the alternative 
form 

where C1 as well as Jl are defined by Equations (2.31) and (2.32); and consider 
first the case of very small disturbing mass (when Jl -+ 0). As long as quantities 
of the order of Jl2 remain ignorable, Equation (2.37) will admit of a real solution 
only if 

(2.38) 

For small values of Jl, the solution of this latter equation can be sought in the 
form 

r = 510 + 5n Jl + ... , 
where 510,511 , ••• are defined by the equations 

(1 - v 2 )Sro - CISlO + 2 

3(1- v2 )SioSn - C15n - 2 

etc., whose solutions become 

0, 

SlO = 2 { Cl }1/2. {I . -1 3 )3(1- V 2 )} sm -sm -
3(1 - v2 ) 3 C1 C1 

and 

respectively 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

Equation (2.39) with its coefficients as given by (2.42) and (2.43) will closely 
approximate the form of the primary component of a contact system which is very 
much more massive than the secondary. Its first term SlO defines obviously the 
form of a Roche equipotential distorted by centrifugal force alone. If Jl -+ 0, 6 -+ 
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1.5 and C1 -t 3, in which case the parametric equation of the corresponding 
critical equipotential assumes the neat form 

T = h {sin ~ cos-1 v} 
1- v2 3 

sin ~() . 
2-. -()-, 

sm 

and its volume VI, in accordance with Equation (2.12), becomes 

32 11 1 
-71" (1 - v2)-3/2 sin3 ( - cos-1 v)dv = 
3 0 3 

4 { 3(J3 - 1)} 
-71" 3v'3 - 4 + 3 log J3 = 2.26662 ... , 
3 3 + 1 

(2.44) 

(2.45) 

so that, by (2.36), VI == Vd271" = 0.36074. It is the foregoing values, rather than 
those which would follow from a straightforward application of (2.19), which have 
been used to complete the last entries in columns (5) and (9) of Table 11.2. 

If the primary component accounts thus for most part of the total mass of 
our contact binary system, the volume of the secondary must clearly tend to 
zero. The form of its surface will, in turn, be given by an asymptotic solution of 
Equation (2.37) as JL -t 1. Let us, therefore, expand this solution in a series of 
the form 

(2.46) 

inserting it in (2.37) we find the vanishing of the coefficients of equal powers of 
(1 - JL) to require that 

S20 = C1
2_ 3 ' S21 = - { 2 + C1 ~ 3} sio , (2.4 7) 

etc .. An application of Equation (2.12) reveals, moreover, that the volume V2 of 
the respective configuration should be approximable by 

(2.48) 

and the radius T2 of a sphere of equal volume becomes 

(2.49) 

A glance at the second column of Table II.2 reveals that, as q -t 0, CI -t 3 
and, as a result the product (1- JL)S20 tends to become indeterminate for JL = 1. 
In order to ascertain its limiting value, let us depart from Equation (2.31) which, 
on insertion of 6 from (2.28) assumes the form 

(2.50) 

with the root Xl approximable by means of (2.26) where, by (2.27) and (2.32), 

3w3 = 1- JL • (2.51 ) 
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Inserting (2.26) in (2.50) we find that, within the scheme of our approximation, 

so that 

and therefore 

Cl = 3(1 + 3w2 - 4w3 + ... ) ; 

2w --+ 3 -4w 

* 2 32 3 
r2 = -w - -w + 

3 27 

... , 

(2.52) 

(2.53) 

(2.54) 

In consequence, it follows from (2.36) that, for a secondary component of vanish-
ing mass 

(2.55) 

An inspection of the last two columns of Table II.2 reveals that, for the 
primary (more massive) component, the value of Vl increases monotonously with 
diminishing mass-ratio m2/ml from 0.07227 for the case of equality of masses to 
0.36075 for m2 = 0, at which point the primary component becomes rotationally 
unstable and matter begins to be shed off along the equator if axial rotation is 
any faster. On the other hand, for the secondary (less massive) component the 
values of V2 diminish with decreasing mass-ratio from 0.07227 until, as m2 -t 0, 
the value of 24 /35 has been attained. 

c: Geometry of the Eclipses 

The data assembled in the foregoing section on the geometry of contact configu
rations lead to a number of specific conclusions regarding the eclipse phenomena 
to be exhibited by such systems. For suppose that a contact binary both of the 
components of which are at their Roche limits is viewed by a distant observer, 
whose line of sight does not deviate greatly from the x-axis of our model as shown 
on Figure II.2 If so, then in the neighbourhood of either conjunction one com
ponent is going to eclipse the other, and the system will exhibit a characteristic 
variation in brightness. if, in turn, the observed light variation is analyzed for 
the geometrical elements the fractional "radii" rl,2 of the two components should 
(very approximately) be identical with the quantities Y4,5 as listed in columns 
(5) and (7) of Table II.2. In Table II.3 we have, accordingly, listed four-digit 
values of the sums rl + r2 as well as the ratios r2/rl of the "radii" of such contact 
components as functions of their mass-ratio. 

An inspection of this tabulation reveals that, within the scheme of our ap
proximation, the sum rl = r2 of fractional radii of both components in contact 
binary systems is very nearly constant and equal to 0.75 ± 0.01 for a very wide 
range of the mass-ratios q; whereas the ratio r2/rl decreases monotonically with 
diminishing value of q. Therefore, a photometric determination of the sum rl + r2 
- which, unfortunately, represents nearly all that can be deduced with any ac
curacy from an analysis of light curves due to shallow partial eclipses - cannot 
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q rl + r2 rt/ r2 

1.0 0.7474 1.0000 
0.9 0.7486 0.9495 
0.8 0.7489 0.8959 
0.7 0.7496 0.8389 
0.6 0.7510 0.7777 

0.5 0.7529 0.7112 
0.4 0.7565 0.6379 
0.3 0.7622 0.5550 
0.2 0.7722 0.4573 
0.15 0.7805 0.3995 

0.1 0.7935 0.3312 

Table II.3: 

be expected to tell us anything new about contact systems; or, in particular, 
about their mass-ratios. It is the ratio of the radii r2/rl whose determination 
would provide a sensitive photometric clue to the mass-ratio of a contact system. 
This underlines the importance of photometric determination of the ratios of the 
radii of contact binary systems; but owing to purely geometrical difficulties this 
important task of light curve analysis is, unfortunately, not yet well in hand. 

Suppose next that a contact binary system, consisting of two components at 
their Roche limits, is viewed by a distant observer from an arbitrary direction. 
What will be the range of such directions from which this observer will see both 
bodies mutually eclipse each other during their revolution? In order to answer 
this question, let us replace the actual form of the corresponding Roche limit by 
an osculating cone which is tangent to it at the point of contact Pl. The equation 
of this cone may readily be obtained if we expand the function ~(x, y, z) of Roche 
equipotentials in a Taylor series, in three variables, about Pl. 

The first partial derivatives ~x, ~y and ~z have already been given by Equations 
(2.20)-(2.22) in the preceding part of this section. Differentiating these equations 
further we find that 

~xx = (3x2 - r2)r-5 + q{3(1- x)2 - r'2 }(r')-5 + q + 1 , 

~yy = (3y2 _ r2)r-5 + q{3y2 - r,2}(r')-5 + q + 1 , 

~zz = (3z2 - r2)r-5 + q{3z2 - r,2}(r')-5 , 

~xy = 3xyr-5 - 3q(1 - x )y( r')-5 , 

(2.56) 

(2.57) 

(2.58) 

(2.59) 
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~xz = 3xzr-5 - 3q(1 - x)z(r't5 , 

~yz = 3yzr-5 + 3qyz(r't5 • 
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(2.60) 

(2.61) 

We note that all first (as well as mixed second) derivatives of ~ vanish at Pl. 
Hence, a requirement that the sum of nonvanishing second-order terms should 
add up to zero provides us with the desired equation of the osculating cone in 
the form 

where 

(~xxh = 2p +q+ 1, 

(~yy h = -p +q + 1 , 

(~zzh = -p 

in which we have abbreviated 

(2.62) 

(2.63) 

(2.64) 

The direction cosines I, m, n, of a line normal to the surface of this cone clearly 
are given by 

(2.65) 

where f(('y,z) stands for the left-hand side of Equation (2.62) and (== x - Xl. 

Moreover, the direction cosines of the axis of this cone in the same coordinate 
system are (1, 0, 0). Consequently, the angle f between any arbitrary line on the 
surface of the osculating cone and its axis will be defined by the equation 

I = cos( ~ 7r - t") = sin f ; 

so that 
[2 f? tan2 f - - , • 

- 1 - 12 - f2 + f2 ' Y z 

where, by (2.62), 

Therefore, 

fJ + r; 
Since, moreover, it follows from Equation (2.62) that (2(~xxh 
z2( ~zz h, it follows on insertion in (2.67) that 

_ {(~YYhy2 + (~zzhz2} (~ ) = 
(~yy)iy2 + (~zz)iz2 xx 1 

{ (p - q _ 1 )y2 + pz2 } 
(p-q-1)2 y2+ p2z2 (2p+q+1), 

(2.66) 

(2.67) 

(2.68) 

(2.69) 

(2.70) 
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where the values of ~xx, ~yy, ~%% at the conical point P of Figure 1I.2 are given by 
Equations (2.64). 

All the foregoing results of this section have been based on the approximation 
of the Roche lobes in contact by an osculating cone at Pl. While this should 
always constitute a legitimate basis for computations of the limits of eclipses 
by the less massive component of a contact pair (in the sense that its surface 
is always interior to the common osculating cone), Chanan et al (1976) called 
attention recently to the fact that the surface of the more massive component 
can actually "overflow" this cone by amounts increasing with the disparity in 
masses of the two stars. 

In order to demonstrate this, let us expand-in accordance with Equation 
(1.2)-the Roche equipotentials lJ1(x, y, z) of a contact loop in the proximity of 
the point PI of coordinates Xl, 0, ° in a Taylor series of the form 

1 
IJ1(Xb 0, 0) - 2(2p + q + 1)(2 + 

1( ) 2 1 2 3 + - P - q - 1 Y + -pz + s( -
2 2 
3 2 3 2 - -s(y --s(z + ... , 
2 2 

(2.71) 

correctly to terms of third order in X, y, z, where- as before-( == X - Xl and 
where we have abbreviated 

-4 (1 )-4 s = Xl - q - Xl • (2.72) 

Over an equipotential surface IJ1 = constant and, therefore, lJ1(x,y,z) = 
\Ji(XI' 0, 0). If, moreover, we confine our attention to an intersection of these 
equipotentials with the plane z = 0, Equation (2.72) can be solved for y in terms 
of ~ in the form 

(2p+ q + 1)(2 - 2se 
p - q -1- 3s( 

2p + q + 1 (2 4p + 5q + 5 (3 + ( )2 S + .... p-q-1 p-q-1 
(2.73) 

If we truncate the expansion on the r.h.s. of the foregoing equation to its first 
term, we obLin the osculating cone identical with Equation (2.62) above. The 

next term, factored by an odd power of (, will change sign as X ~ Xl: for X < Xl 

(Le., in the direction of the less massive star) it will be negative and, hence, the 
actual value of y2 will be less than that appropriate for the osculating cone. For 
X > Xl the converse will, however, be the case; and the actual Roche surface will 
overflow the osculating cone. 

The extent to which this is the case cannot, in general, be established ana
lytically, and recourse must be had to numerical computation. This has recently 
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q 'ljJmax 'f/;cone imin Zeone 

1.00 57.31 57.31 34.45 34.45 
0.80 57.35 57.32 34.45 34.45 
0.60 57.49 57.35 34.33 34.44 
0.40 57.88 57.43 34.07 34.42 
0.20 59.00 57.64 33.34 34.35 
0.10 60.56 57.92 32.39 34.27 

Table 1I.4: Eclipse and osculating cone angles (in degrees) as a function of mass-ratio 
for binary systems in which both components fill their Roche lobes (after Chanan et ai, 
1976). 

been done by Chanan et al (1976), from whose paper the data given in columns 
(2) and (4) of the accompanying Table 1I.4 have been excerpted. In the conical 
approximation, the maximum duration of eclipse (Le., the maximum value of the 
phase angle 'ljJ1 of first contact of the eclipse) can be expressed in a closed form in 
the following manner. Let xy stand for the orbital plane of the two components, 
inclined to our normal to the line of sight (i.e., tangent to the celestial sphere) at 
an angle i. If so, then obviously 

x = cos 'ljJ1 sin i == cos f., } 

Y = sin 'ljJ1 sin i , 
z = cos i ; 

(2.74) 

and the apparent projected distance 81 between the centres of the two components 
at the phase angle 'ljJ1 will be given by 

Since, moreover, 
1 

1 - 8r = cos2 f. = ---..".-
1 + tan2 f. ' 

a combination of (2.67) with (2.76) discloses that 

82 = a cos2 i {a + 2 - 48r} , 
1 a - 1 a + 2 - 38r 

where we have abbreviated 

by (2.64). 

(2.75) 

(2.76) 

(2.77) 

(2.78) 
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The maximum duration of the eclipse will occur when i = 90° and Z == 
cos i = o. IT so, however, Equation(2.77) can remain finite only if the denominator 
a + 2 - 38r on the right-hand side of (2.77) will also vanish-which will be the 
case if 

2 _·2 a+2 
8eone = SIn '!/Jeone = -3- (2.79) 

yielding 

2 I-a p-q-l 
cos '!/Jeone = -- = . 

3 3p 
(2.80) 

Conversely, the eclipse becomes grazing (Le., 80 == cos imin) if '!/J = 0°. If so, 
however, Equation (2.77) will disclose that 

2 . a + 2 2p + q + 1 
cos Zeone = -- = 

a + 3 3p+ q + 1 
(2.81) 

The values of '!/J and ieone are then listed as functions of q in columns (3) and 
(5) of Table 11.4. This is always bound to be true if the contact component of the 
Roche loop is the less massive one of the two; for the more massive component 
(i.e., the larger of the two, the values given in column (2) continue to apply. 

A glance at these data discloses that the values of '!/Jrnax are remarkably in
sensitive to the mass-ratio--a fact of considerable significance for the students of 
close binary systems, first noted by the present writer in 1954; for the variation 
of light exhibited by systems the components of which fill in the largest Roche 
lobes capable of containing their mass (in particular, eclipsing systems of the W 
UMa-type) in the course of an orbital cycle is so smooth and continuous that 
it is next to impossible to detect by a mere inspection of their respective light 
curves just where eclipses may set in. Our present analysis has now supplied a 
theoretical answer: namely, the light changes of an eclipsing system will be unaf
fected by eclipses for all phase angles in excess of ±60° even if both components 
are in actual contact-at least as long as their mass-ratios do not become less 
than 1:10 (though for greater disparity in masses this limit will continue to in
crease; d. Chanan et aI, 1976). Therefore, the light changes exhibited at phases 
±30° (or more) around each quadrature should be due solely to the proximity 
effects associated with both stars (d. Chapter VII), and may be analysed as 
such without fear of interference from eclipse phenomena. Moreover-and again 
almost regardless of the mass ratio q-Equation (2.81) makes it evident that no 
binary system can exhibit eclipses if its orbit is inclined to the celestial sphere 
by less than 33°-34°. For values of i greater than this limit eclipses may occur 
(and must occur for contact binary systems), of durations '!/Jl connected with i by 
Equation (2.77) in the conical approximation. For mass ratios q ~ 1 the relation 
between the two becomes again more involved; and for its tabulation the reader 
is referred to Chanan et al (1976). 
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D: External Envelopes 

In the foregoing parts of this section we have been concerned with various proper
ties of Roche equipotentials when ~ > ~}, and later we investigated the geometry 
of limiting double-star configurations for which ~ = 6. The aim of the present 
section will be to complete our analysis of the geometrical properties of the Roche 
model by considering what happens when ~ < 6. In the introductory part of 
this chapter we inferred on general grounds that, if ~ < 6, the dumb-bell figure 
which originally surrounded the two components will open up at PI (cf. again 
Figure ILl and the corresponding equipotentials will enclose both bodies. 

When will these latter equipotentials containing the total mass of our binary 
system cease to form a closed surface? A quest for the answer will take us back 
to Equation (2.20) defining the partial derivative ~x. We may note that the right
hand side of this equation is positive when x -+ 00, but becomes negative when 
x = 1 + f, where f denotes a small positive quantity. It becomes positive again as 
x -+ 0, and changes sign once more for x -+ -00. Since ~x is finite and continuous 
everywhere except at x = 00 and for r = 0 or r' = 0, it follows that it changes 
sign three times by passing through zero at points Xl, X2, X3, whose values are 
such that 

(a) 0 < Xl < 1, (b) X2> 1, (e) X3 < 0 ; (2.82) 

and of these, only the first one has been evaluated so far in this section, and its 
numerical values listed in column (2) of Table ILL 

An evaluation of the remaining roots X 2,3 offers, however, no greater difficulty. 
In embarking upon it we should merely keep in mind that, regardless of the sign 
of x, the distances rand r' as defined by Equations (1.3) are positive quantities. 
Thus, unlike in case (a)-when, by setting r = x and r' = 1 - x, we were led to 
define Xl as a root of Equation (2.24)-in case (b), when X2 > 1, we must set 
r = x but r' = x -1; and in case (c), when X3 < O,r = -x and r' = 1- x. After 
doing so and clearing the fractions we may verify that the equation ~x = 0 in the 
case of (b) and (c) assumes the explicit form 

(2.83) 

and 
(2.84) 

respectively 
For q = 0, the former Equation (2.83) becomes identical with (2.24) and 

reduces to (2.25) admitting of x = 1 as a triple root. Hence, for small values of 
q, the root X2 > 1 of the complete Equation (2.83) should be expansible as 

( 1.l)1/3 1 (1.l)2/3 1 (I.l) 
X2 = 1 + 3" + 3 3" + 9" 3" + ... (2.85) 

in terms offractional powers of I.l == q/(q+ 1). Similarly, Equation (2.84) reduces 
for q = 0 to 

(2.86) 
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admitting of only one negative root (namely, -1). In consequence, the negative 
root X3 of (2.84) should, for small values of JL, be approximable in terms of integral 
powers of JL by an expansion of the form 

7 1127 3 
X3 = -1 + 12 JL - 20736 JL + .... (2.87) 

The approximate values of X2 and X3 as obtained from (2.85)-(2.87) may, more
over, be subsequently refined to any degree of accuracy by differential corrections 
or any other standard method. 

Once sufficiently accurate values of X2,3 have thus been established, the values 
of ~ corresponding to equipotentials which pass through these points can be 
ascertained from the equation 

6,3 = ~(X2,3, 0, 0) ; (2.88) 

while the corresponding values of C2,3 then can be found (cf. Equation (2.31) 
from 

C2,3 = 2(1- JL)6,3 + JL2 • (2.89) 

A tabulation of five-digit values of X2,3 and C2,3 is given in columns (2)-(5) of 
the accompanying Table II.S. It may also be noticed that, to a high degree of 
approximation 

(2.90) 

or 
(2.91 ) 

while, somewhat less accurately, 

(X2 - 1? = 1 - x~ . (2.92) 

A comparison of the values of C2 ,3 as given in Table II.S with those of C1 

from Table II.2 reveals that, for all values of q > 0, 

(2.93) 

For any value of C within the limits of the inequality C1 > C > C2 the corre
sponding equipotential will surround the whole mass of the system by a com
mon external envelope, which may enclose the common atmosphere of the two 
stars. For C = C2 , this envelope will develop a conical point P2 (at which 
~x = ~y = ~% = 0) at x = x2-i.e., behind the centre of gravity of the less massive 
component (see Figures 11.1 or 11.2); and if C < C2 , the respective equipotentials 
will open up at P2 • For C = C3 , a third conical point P3 develops behind the 
centre of gravity of the more massive component at x = X3; and if C < C3 , the 
equipotentials will open up at both ends. Their intersection with the xy-plane 
will then no longer represent a single closed curve, but will split up in two sepa
rate sections (symmetrical with respect to the x-axis), closing gradually around 
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q X2 C2 -X3 C3 C4 ,5 

1.0 1.69841 3.45680 0.69841 3.45680 2.75000 
0.8 1.66148 3.49368 0.73412 3.41509 2.75309 
0.6 1.61304 3.53108 0.77751 3.35791 2.76563 
0.4 1.54538 3.55894 0.83180 3.27822 2.79592 

0.3 1.49917 3.55965 0.86461 3.22675 2.82249 
0.2 1.43808 3.53634 0.90250 3.16506 2.86111 
0.15 1.39813 3.50618 0.92372 3.12959 2.88658 
0.1 1.34700 3.45153 0.94693 3.09058 2.91735 

0.05 1.27320 3.34671 0.97222 3.04755 2.95465 
0.02 1.19869 3.22339 0.98854 3.01961 2.98077 
0.01 1.15614 3.15344 0.99422 3.00990 2.99020 
0.005 1.12294 3.10301 0.99710 3.00498 2.99504 

0.001 1.07089 3.03838 0.99942 3.00099 2.99990 
0.0002 1.04108 3.01387 0.99988 3.00020 2.99980 
0 1.00000 3.00000 1.00000 3.00000 3.00000 

Table I1.5: The data collected in this table are taken from Kopal (1959). For other 
tabulations of these quantities-in particular for very small values of the parameter 
J.l = q/(q + 1)-cf., Rosenthal (1931), Kuiper and Johnson (1956), Szebehely (1967) or 
Kitamura (1970). 

two points which make equilateral triangles with the centres of mass of the two 
components. The coordinates of such points are specified by the requirements 
that r = r' = 1; consequently, x = 0.5 and y = ±v3/2. These triangular points 
represent also the loci at which our equipotentials vanish eventually from the real 
plane - if (consistent with Equations 1.6 and 2.31) their constants C reduce to 

(2.94) 

The values of C4,5'S as given by this equation are listed in column (6) of Table 
U.5 for 1 > q > 0, and represent the lower limits attainable by these constants; 
for if C < C4 ,5, the equipotential curves ~ = constant in the xy-plane become 
imaginary, and thus devoid of any physical significance. 
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11.3 Time-Dependent Roche Equipotentials 

The geometrical properties of equipotential surfaces surrounding the Roche grav
itational dipoles discussed in the preceding section, are independent of the time. 
This is, however, true only within the framework of special assumptions underly
ing Equation (1.6): namely, for constant values of ml,2 and R (Le., if the two finite 
masses describe circular orbits with the Keplerian angular velocity W == WK), and 
if the equatorial plane of the rotating configuration coincides with that of their 
orbit. A breakdown of any of these assumptions is, however, bound to render 
the expression for the total potential ~ as given by Equation (1.2)-and, con
sequently, the normalized potential ~-a function of time; and the aim of the 
present section will be to develop the necessary consequences of this fact. 

A: Inclined Axes of Rotation 

In order to investigate such effects, consider first the case in which the component 
of mass ml (whose equipotential surfaces are distorted by tides raised by its 
companion of mass m2) rotates about an arbitrarily oriented axis with an angular 
velocity WI which may (but need not) be equal to the Keplerian angular velocity 
WK as given by Equation (1.4). If so, Equation (1.2) for the total potential ~ 
should be replaced by 

~ = G ml + G m2 + w'k ( m2R ) 2 

r r' 2 ml + m2 

(3.1) 

where the singly-primed rectangular coordinates x', y', z' rotate with the angular 
velocity WI of the star of mass ml, but x" stands for the revolving coordinate the 
axis of which coincides with the radius-vector r of relative orbit of the two finite 
masses ml and m2' 

In order to relate the singly- and doubly-primed coordinates with each other, 
consider (also for future use) three systems of rectangular coordinates, defined as 
follows: 

1) The (unprimed) axes XY Z will represent a system of inertial coordinates 
("space axes") of direction fixed in space in such a way that the XY-plane coin
cides with the invariable plane of the system; while the Z-axis is perpendicular 
to it. 

2) The singly-primed axes X'Y'Z' will stand for a system of rectangular 
coordinates rotating with the body ("body-axes"), defined so that X'Y'-plane 
represents the (instantaneous) equator of the rotating star, inclined by an angle 
B to the inertial XY-plane and intersecting it at the angle ¢ (see Figure II.3). 

3) The doubly-primed axes X"Y" Z" will hereafter represent a system of re
volving rectangular coordinates, in which the X -axis is constantly coincident with 
the radius-vector between the origin and the centre of mass of the revolving star, 
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z' z 

Line of Nodes 

Figure II.3: Definition of Eulerian angles 

and Z" = 0 represents the (instantaneous) position of its orbital plane. As is well 
known, a transformation of coordinates from the inertial (space) to the rotating 
(body) axes is governed by the matrix equation 

where the direction cosines 

cos 'P cos <p - sin 'P sin <P cos (), } 
- sin 'P cos <P - cos 'P sin <p cos () , 

sin <p sin () ; 

cos 'P sin <p + sin 'P cos <p cos (), } 
- sin 'P sin <p + cos 'P cos <p cos () , 

cos <p sin () ; 

a~l = sin 'P sin (), } 
a~2 cos 'P sin () , 
a~3 cos () ; 

(3.2) 

(3.3) 

(3.4) 

(3.5) 
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where the Eulerian angles </J, 0, <p are defined by a scheme illustrated on Figure 
II.3. 

A transformation of the inertial to revolving coordinates is similarly governed 
by the matrix equation 

where the direction cosines 
II 

all = 
II 

a12 = 
II 

a13 = 
II 

a 21 = 
II 

a22 = 
II 

a23 = 

a" 11 
a" 21 
a" 31 

a" 12 
all 

22 
a" 32 

cosu cos 11 -
- sin u cos 11 -

+ 
cos u sin 11 + 

- sin u sin 11 + 

a" 13 
all 

23 
a" 33 

sin u sin 11 cos i , 
cos u sin 11 cos i , 

sin 11 sin i ; 

sin u cos 11 cos i , 
cos u cos 11 cosi , 

cos 11 sin i ; 

sin u s~n i., } 
= cos u sin z , 

cos i; 

(3.6) 

} (3.7) 

} (3.8) 

(3.9) 

where 11 denotes the longitude of the nodes (i.e., of intersection of the Z = 0 
and Z" = 0 planes measured from the X -axis); i, the inclination of the orbital 
(Z" = 0) to the invariable (Z = 0) plane of the system; and u, the angle between 
the line of the nodes and the instantaneous position of the radius-vector (if, 
in Equations (3.3)-(3.5) defining the singly-primed direction cosines a;j, we set 

</J = 11, <p = u and 0 = i, the a;/s become identical with the doubly-primed 

direction cosines a;j). 
Accordingly, a transformation from the rotating (singly-primed) to the re

volving (doubly-primed) axes obeys the matrix equation 

{ 
x' 

}={ 
)..11 ).." )..11 

}{ 
x" 

} 1 2 3 

y' p,f p,~ p,~ y" (3.10) 
z' 1/" 1/" 1/" Zll 

1 2 3 

where (d. p.155 of Kopal, 1978) 

{ 
)..'! 

}={ 
a~1 a~1 a;1 }{ a" 

} J Ij 

p,J a~2 a~2 a;2 a" (3.11) 2j 
1/'! a~3 a~3 a;3 a" 

J 3j 

for j = 1,2,3 - so that the direction cosines 1/~',2,3 of the axis Z' in the doubly
primed revolving system 

" '" '" I 1/ 1/1 a13all + a23a21 + a33a31 

== A sin u + 13 cos u , (3.12) 
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/I I" I" I II 

V2 a13a12 +a23a22 + a33a32 
== A cos u - B sin u , 

/I I 1/ '" '" v3 = a13a13 + a23a23 + a33a33 
== (1 - A2 _ B2)1/2 , 

where we have abbreviated 

A cos 0 sin i-sin 0 cos( 4> - n) cos i , 

B = + sin 0 sin( 4> - n) ; 

such that 

(1 - A2 - B2)1/2 = cos 0 sin i + sin 0 cos( 4> - n) sin i == v; . 
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(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

The foregoing Equations (3.16)-(3.17) for V~' 23 are exact for any values of the 

Eulerian angle 0 or the inclination i. If, howe~~r, we identify the Z"-axis with 
Z-i.e., set i = 0 rendering ZII = 0 the invariable plane of the respective system 
(an identification permissible without any loss of generality for the Roche model, 
though not for one exhibiting a finite degree of central condensation; cf. Section 
VI.3A), Equations (3.12) - (3.14) will reduce to 

- sin 0 sin( u + n - 4», } 
- sin 0 cos( u + n - 4» , 
+ cosO; 

(3.18) 

in which the Eulerian angles 8 and 4> of Figure II.3 as well as the longitude n of 
the nodes at which the planes Z = ZII = 0 intersect can be treated as constants. 

After these preliminaries let us return to Equation (3.1) for the generalized 
potential with inclined axes of rotation, and rewrite the expression X'2 + yl2 on 
the r.h.s. of (3.1) in terms of the revolving coordinates x", y", Zll by means of the 
transformation (3.10): in doing so we find that 

X'2 + yl2 = r2 _ (vrx")2 _ (V~yll)2 _ (V~Z")2 _ 

- 2(V~'v~xly" + V~'V~X"Z" + v~v~yIZ"), (3.19) 

r2 = x"2 + yll2 + zll2 exactly; or, alternatively, 

(3.20) 

where 

cosE> )..IIV~' + J.l"V~ + V"V~ ; (3.21) 
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and >"", p,", v" being the direction cosines of an arbitrary radius-vector r in the 
doubly-primed coordinates. Accordingly (by the addition theorem for the Le
gendre coefficients) 

P2( cos 0) P2( cos O)P2( cos Oil) + 
+ ~ Pi (cos O)Pi ( cos Oil) sine ¢ - n - u - ¢") -

1 
12Pi( cos O)Pi( cos Oil) cos 2( ¢ - n - u - ¢") ; (3.22) 

and if, moreover, the Eulerian angle 0 is small enough for its squares and higher 
powers to be ignorable, the foregoing expression simplifies to 

P2(cos 0) = P2(V") + 3>.."p," sinOsin(¢- n - u) - 3p,"V" sinOcos(¢- n - u) + .... 
(3.23) 

When 0 = 0 (Le., if the equator and orbit are coplanar), cos 0 becomes 
identical with v" as it was in Section 11.1; but for 0 i 0, cos 0 turns out to 
depend on the true anomaly u measured from the node. If, moreover, WI = WK, 

we can set ¢ = n; but otherwise this need not be the case (d. Chapter VI). 
However, the presence of extra terms on the right-hand side of the Equation 

(3.1) for the Roche equipotentials-rendering the latter to depend on the time
will also influence the explicit form of the expansion (2.12) of their radius-vector 
r in ascending powers of ro: in fact, proceeding in the same way as in Section 
IL2A we find that (correctly to terms of the order of r3) the right-hand side of 
Equation (2.12) should be augmented by the term 

(3.24) 

where (by Equation (3.21)), 

cos 0 = cos 0 cos 0" + sin 0 sin 0" sine ¢ - n - u - ¢") (3.25) 

replacing nr~(1 - cos2 fJ"); but an evaluation of higher-order effects arising from 
inclination of the equator to the orbital plane should be left as an exercise for the 
interested reader. 

B: Eccentric Orbits 

In conclusion of our brief survey of different geometrical properties of the Roche 
Model, let us point out one additional case in which such properties are bound 
to depend on the time: namely, if the Keplerian orbit of the two finite masses mI 

and m2 becomes eccentric. If so, the separation R of their mass centres will be 
bound to vary as 

R = A(l- e2 ) , 

l+ecosv 
(3.26) 
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where A stands for the semi-major axis of relative orbit of the masses M 1,2; e, 
its eccentricity; and v is the true anomaly measured from the periastron pas
sage. Within the framework of the Roche model (Le., if ml,2 can be regarded as 
mass-points) the parameters A and e on the right-hand side can be regarded as 
constants. If so, the right-hand side of the expression (1.2) for the total potential 
'IT can be rewritten, more explicitly, as 

'IT( v) 1-f.L f.L{ [ (R)3] X -r-+ R 1+ 1- A ;:-+ 

(3.27) 

where (in agreement with Equations (2.32)) f.L == m2/( ml + m2); and for eccentric 
orbits, the Keplerian angular velocity 

(3.28) 

We wish to conclude this chapter by a proof that, in the case of elliptic orbits 
of masses ml,2, the foregoing potential (3.27) is no longer identical with the zero
velocity surfaces of the restricted problem of three bodies. In order to do so, let 
us depart from the elliptic three-body problem in space, which in the revolving 
( doubly-primed) coordinates x", y", z" assumes the form 

x" - 2il" = (1 + e cos v)-lnxll , 

fi" + 2±" (1 + e cos v)-lnyll , 

Z" (1 + ecosv)-lnzll ; 

in terms of the potential 

or, alternatively, 

where 

n' 

x" - 2i/' 
jj" + 2±" 
z" + z" 

(1 + e cos v)-ln~1I , 
1 I = (1 + ecosv)- nyll' 

(1 + e cos v)-ln:1I , 

1 
n + 2"zll2(1 + e cos v) = 

(1 - f.L)(r11 + ~ri) + f.L(r2"l + ~rD , 

(3.29) 

(3.30) 

(3.31 ) 

(3.32) 

(3.33) 

(3.34) 

(3.35) 

(3.36) 
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in which 
(3.37) 

and 
(3.38) 

differing from rand r' as defined by Equations (1.3) only insofar as the origin of 
coordinates has been shifted from the centre of mass ml to that of the system 
ml m2 as a whole. 

The dots on the left-hand sides of Equations (3.31)-(3.32) or (3.35)-(3.36) 
stand for ordinary differentiation with respect to the time t, and the terms fac
tored by :i; and iJ represent the effects of the Coriolis force. It may also be noted 
that the potential fl' as defined by Equation (3.36) does not depend explicitly on 
the eccentricity e of the orbit of the finite masses ml and m2; nor does it depend 
explicitly on the time; the latter enters Equations (3.35)-(3.37) only through the 
cosine of the true anomaly v of the binary orbit. 

In order to obtain the Jacobi energy integral of the systems (3.31)-(3.32) or 
(3.35)-(3.36), let us multiply these equations successively by :i;, iJ, z and add: the 
result will be (in each case) 

or 

~ ~(:i;1I2 + iJlI2 + zll2 + Zll) 
2 dt 

(1 )-l( '110 '110 '"0) + e cos v x Hx" + Y Hy" + Z Hz" 

(3.39) 

(3.40) 

If, moreover, we change over from the time t to the true anomaly v as the inde
pendent variable of our problem by means of Kepler's second law 

(3.41 ) 

valid for the orbit of the two finite masses, Equation (3.39) can be formally 
integrated to yield 

(:i;1I)2 + (iJ"? + (ZIl)2 + (ZII)2 = 2 J dfl 
1 + ecosv 

(3.42) 

or 

(:i;1I)2 + (iJ'12 + (ZIl)2 = 2 J dfl' . 
1 + ecosv 

(3.43) 

For e = 0 (corresponding to a "circular" restricted problem of three bodies), 
the foregoing Equations (3.42) and (3.43) can be readily integrated to yield 

T=fl+C, (3.44) 

where 
(3.45) 
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stands for the (scaled) kinetic energy of the system; fl, for its potential energy; 
and C is a constant of integration independent of the time. 

Equation (3.44) as it stands represents the classical form ofthe Jacobi integral 
of the "circular" restricted problem of three bodies. If, however, e ::J. 0, it is no 
longer admissible to integrate Equations (3.39) or (3.40) explicitly to the form 
(3.42) or (3.43): the latter become mere identities, satisfied by any solution of 
the Equations (3.31)-(3.32) or (3.35)-(3.36) of motion. The significance of the 
classical Jacobi integrals rests on the fact that, if e = 0, each side of Equations 
(3.42) or (3.43) constitutes a perfect differential; so that the values of the various 
terms depend only on the end-point positions of the infinitesimal mass particle. 
But if e > 0, in order to establish the instantaneous shape of the zero-velocity 
surface, we would need to know the value of dfl at each value of (or v) all along 
any selected path; and to establish this from (3.42) or (3.43), an integration 
of Equations (3.31)-(3.33) or (3.35)-(3.37) would require the adoption of six 
arbitrary constants representing the initial conditions of our problem; and no 
closed formula can be invoked to establish the outcome. 

Only in our particular case do the known solutions of the "circular" problem 
of three bodies transfer readily to the "elliptical" case: namely, the positions of 
the five Lagrangian points in the orbital plane of the two finite masses. As is 
well known, their locations are defined by the requirements that the velocities as 
well as accelerations vanish simultaneously at such points in the plane z" = 0; 
and if so, the left-hand sides of Equations (3.31)-(3.33) or (3.35)-(3.37) vanish 
identically. However, in order that this be true, it is necessary that their right
hand sides must vanish-i.e., that 

(3.46) 

as well; and the coordinates x", y" at which this occurs for z" = 0 have already 
been established in Section 2C of this chapter. We stressed, however, before 
that the potential fl' of the "elliptic" problem as given by Equation (3.36) is 
independent of the eccentricity of the Keplerian orbit of the finite masses ml 
and m2-a fact which implies that the existence as well as relative positions of 
the five Lagrangian points-collinear as well as triangular-remains the same as 
given in Table II.5; and completely independent of e. 

II.4 Bibliographical Notes 

The contents of Sections 1 and 2 of this chapter follow largely the presentation of the 
subject in the first part of Chapter VI of the writer's Dynamics of Close Binary Sys
tems (Kopal, 1978) and (partly) Chapter III of his previous treatise (Kopal, 1959); with 
corrections of misprints which crept into these previous sources. The geometry of the 
eclipses of contact systems represented by the Roche model can be traced to a previous 
source (Kopal, 1954); while for complications arising from a great disparity in mass-ratios 
of contact systems see Chanan, Middleditch and Nelson (1976). 

It may be noted that the term "Roche Limit" in the sense used in this book (as well 
as in all other above-quoted sources) goes back to Kopal (1955). It is not to be mistaken 
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for the concept signifying the minimum distance at which a fluid satellite of infinitesimal 
mass can approach an oblate planet (Roche, 1850), and referred to as "Roche Limit" by 
G. H. Darwin (1906, 1911) and Jeans (1919). In this sense, it likewise continues to be 
used (cf. Chandrasekhar, 1963; or Kopal and Song, 1983) up to the present time. 

For previous literature concerning the time-dependent Roche equipotentials discussed 
in Section 1I.3A, cf. Plavec (1958); Limber (1963) or Kruszewski (1966). 

Concerning the "elliptic" restricted problem of three bodies, the equations (3.35)
(3.37) used in Section II.3B were deduced first by Scheibner as far back as 1866. How
ever, inasmuch as Scheibner's work appeared in a non-astronomical periodical and under 
a concealing title ("Satz aus der Storungstheorie"), it was generally overlooked by subse
quent investigators, and remained unknown until it was re-discovered independently by 
NechVlle (1926) and Rein (1940). 

For the energy integral of the elliptic problem of three bodies cf. Ovenden and Roy 
(1961) or Kopal and Lyttleton (1963). A treatment of this subject in Section II.3B follows 
largely this latter source. 


